AR e A

Tr o mern Sy SRR 7 RO LU KT PARPE TED e LS R Lol § A ek

MASSACHUSETTS
LABORATORY FOR ﬁ% MASSACHUSETTS,
COMPUTER SCIENCE TECHNOLOGY h

LE‘JEW A

MIT/ICS/MM-151

DTIC

ELECTEgM /
> MAR 1 9 1980[3 ;
REVERSIBLE COMPUTING (:‘" :

C

AMAO82U2]

Tammaso Toffoli

Febrvary 1980

This research was supported by the Office of
Naval Desearch under Contract No. N00014-75-C-0661

\. J

545 TECHI\}OLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02132

80 3 17 208

DG Fiee copy;

B Rttt vtaret o o 42 4% /B s o s i 2 e LIS ’ R e

SECURITY CLASSIFICAT'ON OF THIS PAGE (When Data Enfered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
ER ey T TT"T7. GOVT ACCESHION HOJ 3 RECIPIENT'S CATALOG NUMBER
MIT/LCS/MM-151 |

™ TITLE ¢and Subtitls) S TYPE OF REPORT & PERIOD COVERED

6 PERFORMING ORG. REPORT NUMBER

MIT, -~]15)
T AGTROR(Y) "] @ TONTRACT OR GFANT NUMBER(®)
p -

i (19) wwreeal

3 PERFORMING ORGANIZATION NAME AND ADDRESS / o FREGRAW ELENENT. PROJECT. TASK

MIT/Laboratory for Camputer sclrence
5 Technology Square L

Cambridge, MA 02139

11 CONTROLLING OFFICE NAME AND ADDRESS / / 1T~ -REFORT DATE ;5’"
ONR/Department of the Navy (_ Februswy W86

,—.—.-—_._-—_‘-M—————————-‘

Information Systems Program 5] 3N8uun:n OF PAGES

Arlington, VA 22217

MONITORING AGENCY NAME & ADDRESS(!! different from "‘_ng"n‘ Oftice) 18 SECURITY CLASS (of thie report)

-" // .;) Unclassified
e o Tmm‘i—_
SCHEDULE

18 O.STRIBUTION STATEMENT (of thie Report)

This document has besn approved for public release and sale;
its distribution is unlimited

Y7 DISTRIBU FION STATEMENT (of the asateact eatersd in Block 20, it ditterent lrom Report)

DTIC
ELEZTT F’*\

18 SUPFLEMENTARY NOTES

19 XEY WORDS (Cominue ont reverse aide if necassary and identily by block number)
Reversible carputing
computation universality
aucmata
camputing networks
physical computing

20 ABSTRAGCT (Continue on reverss aide if necessary and identily by block number)
") The thecry of resersible computing 18 based on invertible primitives and
camposition rules that preserve invertibilaity, With these constraints, one
can still satisfactorily deal wich both functional and structural aspects of
camput.ing processes; at the same time, one attains a closer correspondence
etveen tla behavier of abstract computing systems and the microscopic physical
laws (which are presumed to be strictly reversible) that underly any concrete
1n “lemertation of such systems., Hererwe integratelinto a comprehensive

(T RS FEC,

U - wtv
DD . 27, 1473 euimion oF 1NOV 835 CBSOLETE

SECUAITY CLASS,FICATION OF THIS PAGE (#hen Data Enterey)

L’

s Lnann

Ya

RN Y

*® » ° *

oy ’ N :

L ABWFICA' P Y p Deta Briored

picture a variety of concepts and results. According to a physical
interpretation, the central result of this paper is that it is ideally
possible to build sequential circuits with zero internal power
dissipation. Even when these circvics are interfaced with conventional
ones, power dissipation at the interface would be at most proportional
to the number of input/output lines, rather than to the number of logic
gates as in convertional computers.

5

SECUMITY CLASS"ISAY ON OF THIE PAGYINas Date K

SRR ARRE A |

s O3

(R g2 wd xc

el bt 0

REVERSIBLE COMPUTING*

Tommaso Toffoli

MIT Laboratory for Computer Science
545 Technology Sq., Cambridge, MA 02138

Abstract, The theory of reveruible computing is based on invertible
primitives and composition rules that preserve inveriibility. With these con-
straints, one can still satisfactorily dea! with both functional and structural
aspects of computing processes; at the saise iime, one attains a closer cor-
respondence between the behavior of abstract computing syster:s and the
microscopic physical laws (which are presumed to be sirictly rever-ble) that
underly any concrete impiementation of such systems.

Here, we integrate into 8 comprehensive picture a variety «f coacepls
and results. According to a physical interpretation, the central r:s!. of this
paper is that it is ideally possible to build sequential circuits with zezoi.iternal
power dissipation. Even when these circuits are interfaced with woxveutional
ones, power dissipstion at the interface would bs at most prapeitional §
the number of input/output lines, rather than to the numbe: of logic gate .
as in conventional computers.

Keywords. Reversible computing, computatsn universaiily,
automata, computing networks, physical computing.

1, Introduction

Mathematical models of computation are abstract =:absuctions. br fyelc
nature unfettered by physical laws. However, if these ~uvisic ase £ glve s
dications that are relevant to concrete computing, they v uat somehe w capt ¢,
albeit in a selective and stylized way, certain general ;saysical restrictioss to
which all concrete computing processes are subjected. i - 7 instance, the T zing
machine, which embodies in a heuristic form the axic=- «f computability tseory,
avowedly accounts in its design[24] for the fact tha: \he speed of propagation
of information is bounded, and that the amount of ‘:formation which can be
encoded in the state of a finite system is bounded. Howeves, other physical

¥This research was supporied by Grant NOU014-15-C-0681, Omice of Naval
Research, funded by DARPA.

principles of cuniparable importance, such as the reversibility at a microscopic
levei of the dynamical laws (which imposes severe constraints on the operation of
conerete computing primitives[12,23]) and thefact that the topology of spacetime
iz Jocally Euclidean (which severely limits the range of interconnection patterns
for concrete computing structures[19]), are not yet adequaieiy represented in
the theory of computing. Conceivably, a better match between the abstract
conutrucis of the theory and its applications would be attained if a suitable
eounterpart of these principles were incorporated in the theory.

Here, we shall be conceraed with the issue of reversibility. Intuitively, a
dyrnamical system is reversible if from any point of its state set one can uniquely
trace a trajectory backward as well as forward in time. Far a time-discrete
system such as an automaton, this is equivalent to saying that its transition
function is inveriible, that is, bijective. The concepi of reversibility has its
crigins in physics, and, i particular, in the study of continuous systems, such
83 those characterized by a differential equation, rather than discrete systems,
which arc characterized by a transition Junction, In the continuous case, a more
technical definition is necessary; namely, a dynamical system is reversible if
its dynamical semigroup can be expanded to a group{l14]. The connection be-
tween these fwo definitions is immediate, since in the discrete case the transition
function coincides with the generator of the system's semigroup.

It should 22 noted that reversibility does not imply invatiance under time
reversal; the latter is a more specialized notion which is definable in a nontrivial
way only for dynamical systems having additional structure.

In the past, some misgivings were expressed concerning the computing
capabilities of reversible automata. Such misgivings were cleared by the work of
Bennett (reversible Turing machines|4]), Priese {reversible computers embedded
in Thue systems|17]), Fredkin (coneervative logic|7]), and Toffoli (reversible cel-
lular automata(20]). Today, the concept of reversible computing appears to be
not only preductive from a theoretical viewpoint but also promising in terms
of technological applications(g].

In fact, one of the strongeet motivations for the study of reversible comput-
ing comes frem the desice o reduce heat dissipation in computing machinery,
and thus achieve higher density and speed. Briefly, while the laws of physics
are presumed to be strictly reversible, abstract computing is usually thought of
as an irreversible process, since it may involve the evaluation of many-to-one
functions. Thus, as one proceeds down from an abstract computing task to a
formal realization by means of a digital network and finaily to an implementation
in a physical system, at some level of this modeling hierarchy there must take
place the transition from the irreversibility of the given computing process to

P

B R LS S UL 0, TP SEVREs) IR SRS OPMCFI) 1.1

v
et e

[N 1

s as

the reversibility of the physical Iaws. In the customary approach, this transition
occurs at a very low level and is hidden—so tc speak—in the “physics” of the
individual digitsl gate;* as a consequence of this approach, the details of the
work-to-heat conversion process are put beyond the reach of the conceptual
model of computation that is used.

On the other hand, it is possible to formulate a more general conceptual
model of computation such that the gap between the irreversibility of the desired
behavior ard the reversibilit: of a given underlying mechanism is bridged in an
explicit way within the model itself. This we shall do in the present paper.

An important advantage of our approach is that any operations (such as
the cleazing of a register) that in conventional logic lead to the destruction of
macroscopic information, and thus entail energy dissipation, here can be planned
at the whole-circuit level rather than at the gaie level, and most of the time

- can be replaced by an information-lossless variant. A3 a consequence, it appears
possible to design circuits whose internal power dissipation, under ideaf physical
circumstances, is zero. The power dissipaticn that would arise at the interface
between such circuits and the outside world would be at most proportional to
the number of input/output lines, rather than to the number of logic gates.

A R Y

TR i v T L, S

Ry

2. Terminology and notation

A function ¢: X—Y is finiteif X »nd Y are finite scis. A finite automaton is

a dynamical system characterized by a transition function of the form r: X X
Q — Q X Y, where 7 is finite,

Without loss of generality, one may ass.~-~ “La such zets as X, Y, and

@ above be explicitly given as indexed Cartesin. :roducts of sels. We shall

occasionally call lines the individual variables associated with the individual

- factors of such products. By convention, the Cartesian product of zsro factors

is identified with the dummy set {\} consisting of the empty word \. In what

‘ , foltows, we shall assume once and for all that all factors of the aforementiened

Cart>sian products be identical copies of the Boolean set B == {8,1}. This

‘ assumption entails little loss of generality, and—at any rate—the theory of

| reversible computing could be developed along easeatially the same lines if such

\ assurnptio ¢ were dropped.

. that are not invertible, such as the nanD gate; in turn, these are realized by physical
. devices whis b, while by their nature obeying reversible microscopic laws, are made
| macroscopicully irssversible by sllowiug them to convert some work {o heat,

3

; *Typically, the computation s Jogt ally organized arcund computing priraitives

e ey L3 bt B S S TSN T B O e g s S PSR O PR

A, . ———— s

Boeke

The concept of “function composition” is a fundamental one in the theory of
computing. According to the ordinary rules for function composition, an output
variable of one function may be substituted for any numberof input variables of
other functions, i.c., arbitrary “fan-out” of lines is allowed. However, the process
of generating multiple copies of a given signal must be treated with particular

* care when reversibility is an issuc (inoreover, from a physical viewpoint this
process is far from trivial). For this reason, in all that follows we shall restrict the
meaning of the term “function composition” to one-to-one composition, where
any substitution of output variables for input vaiiables is cne-to-one (in other
words, no fan-out of lines is allowed). Any fan-out node in a given function-
composition scheme will have to be treated s an explicit occurrence of a fan-out
function of the form (z) » (z....,2). Intuitively, the responsibiiity for providing
fan-out is shifted from the composition rules to the computing primitives.

We shall be dealing with various classes of abstract computers (such as com-

binational networks, finite sutomata, Turing machines, and cellular antomata)
which conatitute the main paradigms of the theory of computing. An abstract
computer is, in essence, a function-composition scheme,* and a computation is
a particular solution (which may be required to satisfy certain boundary condi-
tions or other constraints) of such a scheme. While finite composition schemes
are adequate for dealing with the most elementary aspects of computing, many
computing processes of interest require an unbounded amount of resources and
are more conveniently represented as taking place in infiaite schemes.
: It is customary to express a function-composition scheme in graphical form
; as a causality nework (or functional-dependence network). This is basically an
acyclic directed graph whose nodes are labeled by associating with each of them
& particulur finite function and whose arcs are colored by associating with zach
of them a paiticulaz variable. (Here, we can safely ignore certain slight technical
differences between a causality network and a directed graph.)

|
{
5

3
‘. By construction, causality neiworks are “loop-free,” i.e., they contain no %
cyclic paths. A combinational network is a causality network that contzius no
infinite paths, Note that a finite causality network is always a combinational
one.
With certain additional conventions, caueslity networks having a paruicular p

iterative stvucture can be represented more compacily as sequential networks
(cf. Section 7).

i We shiali assume familiarity with the concept of “reslization” of finite func-

oA o

*In what follows, we shall restrict our atteation to function-compoaition schzmes
hesed on funite primitives.

oS s s A D AASTN W

TR AR P e T 1 e

T m e RS X

ALY

P
i
:

. " -
R L VIDRIN e B T

tions aid automuta by means of, respectively, combinational and sequential
networks. In what follows, 8 “realization” will always mean a componentwise
one; that is, to each input {or output) line of a finite fuaction there will cor-
respond an input {or output) line in the combinational neiwork that realizes it,
and simiiariy for the realization of automata by sequential networks.

A causality network is reversible if it is obtained by composition of inver-
tible primitives. Note that a reversible combinational network aiways defines an
invertible function. Thus, in the case of combinational networks the structural
aspect of “reversibility” and the functional aspect of “invertibility” coincide.
A sequential petwork is reversible if its combinationsl part {i.e., the combina-
tional zetwork obteined by daleting the delsy elements and thus breaking the
correeponding arcs) is reversible.

3. In*eoductory concepts

As expl!sined in Section 1, our overall geal is to develop an explicit realiza-
tion of computing processes within the conlext of reversible systems. For the
moment, the processes we shall deal with v.ill be those describad by finite func-
tions, and the systems used for their realization will be reversible combinational
networks. Later on, we ehall consider sequential processes, characterized by the
presence of internal states in addition to input and output states, and we shall
study their realization by means of reversible sequential networks.

As an introduction, let us consider two simple functions, namely, PAn-ouUT
(3.1a) and xon (3.1b):

T Yy
: N 00 0
@ 1§ ® 13- I
I1] (3.1)
FAN-OUT XOR
y=r Iy
T ->—¢< :@’* y=1Pn
yh=z n

Neither of these fuactions is invertible. (Indeed, FAn.our is not surjective, since,
for instance, the cutput (@, 1) cannot be obtained for any input value; and xon

5

|

A

nrv e kg St A e, | T H RS et Sdnad bitery ST e Bratis Y i:%.ﬂ

TR

SORRET

¥
H
.
t
4
i

is not injective, since, for instance, the output 0 can be obiained from two dis-

tinct input values, (¢,0) and (1,1)). Yet, both fanctions admit cf an invertible
realization.

To see this, consider the invertible function xor/PAn-ouT dzfined by the
table

)
oot jms O

0 00
9%~ 4, (3.2)
1 oo

which we have copied over with different Leadings in (3.3a), (3.3b), and (3.8b}.
Then, rFAN.out can be realized by means of this function* as in (3.38) (where
we have outlined the relevant table entries), by assigning a value of € to the
auxiliary input component ¢; and xor can be realized by means cf thz same
function as in (3.3b), by simply disregarding the auxiliasy output component
g- In more technical terms, (3.1a) ie obtained from (3.3a) by componentwise
restriction, and (3.1b) from (3.3b) by projection.

cx Y n»n ¥g
o0 [©F 6] [oJo
s O om _,
O -0 © oe - D
1t 01 um (3.3)
c=0
K
T i T u= xl::l}y'—;‘il@f/z
— =2z D
Y
gl=22) »

In vhat follows, we shall collectively call the source the auxiliary input
compo: znte that have been used in a realization, such as component ¢ i {3.3a),
and th. sink the auxiliary output components such as g in (3.3b). The remaining
input components will be collectively called the argument, and the remaining
output components, the resuit.

In general, both source and sink lincs will have to be introduced in orf e

¥Ordinarily, one speaks of a realization "by a network.” Note, though, that &
finite function by itscil constitutes a trivial case of combinational network.

8

i
i
§

ush

e T o A S S]

-

S, A AL L

S ey

"
£ iy S8 oo L L B

%

- Koa o e

. et i e

e AR T e

|\ T

na Yy

90 0 : v
RS I

11 1 (3.4)

AND NOT

For example, from the invertible function AND/NAND defined by the table

000 000 :
001 001 :
1
100~ 100" 35) \
101 101
110 110 .
111 o1}
the anp function (3.4a) can be realized as in (3.8a) with one source line and two
sink lines. i
cn yan %
oJo] [pjo o f
o o A %
0@@ 010 @t m1 ’
o HU-E e B- R |
101 101 o |
110 110
11T 011 (3.6)
== o
:
1 1
n = = x Y =T
e[l SR
Py i
! nl==) “=4
o= o)

Obscrve that in order to obtain the desired result the source lines must be
fed with specified constant values, i.e., with values that do nnt depend on the
argument. As for the sink lines, some may yield values that do depend on the
argument—as in (3.8a)—and thus cannot be used as input constants for a new
computation; these will be called garbage lines. On the other br.ind, some sink
lines may return constant values; indced, this happens whenever the functional
relationship between argument and result is itself 2a invertible one. To give a
trivial example, suppose that the nor function (3.4b), which is invertible, were
not available as a primitive, In this case one could still realize it starting from
another invertible function, e.g., from the xor/ran-our function as in (3.8b);
note that here the sink. ¢, returns in any case the value present at the source, c.
In general, if there exists between a set of source lines and a set of siuk lines an
invertible functional relationship that is independent of the value of all other
input lines, then this pair of sets will be called (for reacons that will be made
clear in Section 5) a temporary-storage channel.

Using the terminology just establiched, we shall say that the above realiza-
tion of the ran.our function by means of an invertitle combinational function
is a realization with constants, that of the xon function, with garbage, that of
the anD function, with constants and garbage, and that of th= wor function,
with temporary storage (lor the sake of nomenclature, ti:e source line.s thut are
part of a temporary-storage channel will not be counted as lines of onstants).
In referring to a realization, features that are not explicitly menticned wiil be
assumed not to have been used; thus, a realization “with temporary storage”
is one without constants or garbage. A realization that does not require any
source or sink lines will be called an isomorphic realization.

4. The fundamental theoram

Ia the light of the particular examples discussed in the previous section, this
section establishes a general method for realizing an arbitrary finite function ¢
by niecans of an inverfible finite Tunction /.

Here, we are concerned with realizations in the sense defined in Section 2.
In more general rmathematical parlance, a realization of a function ¢ consisis of
a new function f together with {wo mappings ;t and v (respectively, th+ encoder
and the decoder) such that ¢ == vu. In this context, our plan is to obtain
a realization vfu of $ such that f is invertible and the mappings 1 and v are
essentially indsp=ndent of ¢ and contain aslittle “computing power” as possible.
More precisely, though the form of u and v must obviously reflect ths number
of input and ~utput components of ¢, and thus the format of ¢'s truth table,

8

P

et

EX TS CRTR Poegery

AR AR T B

we want them to be otherwise independent of the particular contents of such
truth table as ¢ is made to range over the set of all combinatorial functions.

In general, given any finite function one obtains a new one by assigning
specified values to certain distinguished input lines (source) and disregarding
certain distinguished output lines (sink}. According to the following theorem,
any finite fzaction can be realized in this way siarting from a suitable invertible
one.

Tueorem 4.1 For every finite function ¢: B™ —~ 8" there exists an inver
tible finite function f: B" X B™— B X B'+m%, with r < n, such that

r

f(oﬁov’!v'"v’m)"¢i(511-"v3'm)r ("’"l’“-)”’)' (4‘1)

Proof. Let ¢ be defined by a binary table of the following form

G0 - (3.

where X denotes a listing of all 2™ m-tuples over B and Y dencies a listing
of the correspoading values of ¢, which are n-tuples over 8. We skall define a
function f: B*+™ s Br by means of the following table

n m n "

s N ot N et Yt

0| x Y| X
2_M‘{ Xy [y [x]

P-i]X Y£2°—-1 X

where cach block of the form k (0 < k < 2") consists of 2™ identical n-tuples
each representing the integer k written in base 2, while each block of the form
Y 4k (0 < k < 2" consists of the 2™ entries of Y each treated es & base-
2 integer and incremenied by kmod2". (So the sequence of “Y -+ &" blocks
differs from the “&" sequence only by a circular permutation.) By construction,
each side of this table contains each element of B™+™ exactly once. Thus, f is
invertible. Moreover, equation (4.1), with r w n, holde by construction.fi

9

B e (T S, TSRV T RPN Sen . J POV T2

T IR R e A gt Ay . .

The meaning of Theorem 4.1 is illustrated in Figure 4.1 below. The opers-
tions of restriction and projection mentioned in Section 3 are respectively per-
formed by an input encoder 4 and an output decoder v. While letting through
the argument (zy,..., %y unchanged, the encoder supplies the r acurce lines
with constant values, i.e., with values that do not depend on the argument itself.
On the other hand, while letting through the result {t,..., ¢} unchanged, the
u>coder absorbs whatever values come out of the the m -y — n sink lines.

I N
¢ TN
—(-)_]..;--- P =
result
B / v
- Raaante]
argument, comed-t

Fic. 4.1 Any finite function ¢ can be written as the product of a trivisl
eacodsr i, an invertible fnite function f, and a érivial decoder v,

Intuitively, such a realization of ¢ by meant of an invertible function f is “falr,”
in the sense that neither s nor v contribute to the “computing power” of £,

Since p does not interact with the input signals, it will be more convenient
to visualize it as a separate source of constant input valucs, as in Figure 4.2b
rather than as an fnput encoder, as in Figure 4.1; likewise, 1/ is more conveniently
visualized as a geparate sink of output values rather than as an output decoder.
To sam up, whatever can be computed by an arbitrary fnite function sccording

to the echems of Figure 4.2a can also be computed by an invertible fnit= function
according to the schema of Figuze 4.2b.

16

PAETES)

source
(a) CH’
arbitrary invertible
argument -»4 finite L result argumeni - finite bo— result
function function

T

sink

Fic. 42 Any fiaite function (a) can be realized as an invertible finite
function (b) having a number of auxiliary input lines which sre fed with
constants anc a8 number of zuxiliary output lines whose values are dis-
regarded.

Remark. The construction in the proof of Theorem 4.1 does not necessarily
lead to a minimal realization, as often the number of source lines can be made
strictly less than n and, correspondingly, the number of sink lines strictly lesz
than m. Iatuitively, in many cares the given function ¢ is such that much of
the information contained in the argument is retained in the result, so that in
order to guaranteee invertibility f need only preserve in the garbage signals a
fraction of the tolal information.

5. Invertible primitives and reversible networks

In the previous section, each given ¢ was realized by a reversibie combina-
tional network consisting of a single occurrence of an ad hoc primitive f. In this
section, we shall study the realization of arbitrary finite functions by means
of reversible combirational networks constructed from given primitives; in par-
ticular, from a certain finite sst U of very sumple primitives.

If the given function ¢ is defined by means of an arbitrary combinational
netwerk (in what follows, we shall assume for simplicity that this network be
based on the NAND element), a reversible realization of ¢ based on the set U can
be obtained in & very simple way by subjecting the given network to straightfor-
ward translation rules. However, the reversible realization that is obtained in
this way in general requires many more sink lines (and, consequently, many more
source lines) than the realization of Sectien 4. On the other hand, starting from
the same set U of primitives but using more sophisticated synthesis techniques it
is 1. s8sible to obtain a reversible realization of ¢ that does not require any nore
gurhage lines than when realizing ¢ by means of an ad hoc primitive f. In fact,
£ iteelf—or, for that matter, any invertible finite function—cau be synthesized

11

‘i - PR U

from U without garbage, though possibly with temporary storage.

In this synthesis, the peculiar constraints dicvated by the reversibility con-
text force one to pay attention to a number of issues, such as fan-out, temporary
storage, and the handling of constants and garbage, which do nct arise—or, at
any rate, are noti critical—when these constraints are not present. As a counter-
part, the structure of the networks that are thus cbtained provides more realistic
indications of what an efficient physical implementation o{ the corresponding
computing processes would have to be like.

It is well known that, under the ordinary rules of function composition,
the two-input NanD element constitutes a universal primitive for the set of all
combinational functions.

In the theory of reversible computing, a similar role is played by the ano/nanD
element, defined by (3.5) and graphicaily represented asin Figure 5.1c. Referring
to (3.8a), observe that y = 213, (awp function) when ¢ = 0, and y »= E725 (NAND
function) when ¢ = 1. Thus, as long 2s one supplies a value of 1 to input ¢ and
disregards outputs g1 and g, the AnpjNAND element can be substituted for any
occurence of a NAND gate in an ordinary combinational network.

In spite of having ruled out fan-out as an intrinsic feature provided by the
composition rules, one can still achieve it as a function realized by means of
an invertible primitive, such as the xor/ran.our element defined by (3.2) and
graphically represented as in Figure 5.1b. In {3.3a), observe that gy ==y == =
when ¢ == 0 {(Fan-our function); and in (3.3b), that y =z, @ =2 (xor function).

Finally, rzcall that finite composition always yields invertible functions when
applied to invertible functions (cf. Section 2).

Therefore, using the set of invertible primitives consisting of the AnND/NAND
element and the xor/r.n-our element, any combinational network can be im-
mediately transisted into a reversible one which, when provided with appropriate

© input consterts, will reproduce the behavior of the originai network, Indeed,

even the get U consisting of the single eleinent anp/nano is sufficient for this
purpose, sinee XoR/FAN.OUT can be obtained from Anp/NAND, with one line of
vemporarty storage, by taking advantage of the mapping {4, p, ¢) = {1, p,» Dq).)

The element-by-element substitution procedure outlined above for construct~
ing a reversible-network reslization of & given combinational function is wasteful,
in the sense that the pumber of source and sink lines that are introduced by this
construciion is roughly proportional to ths numnber of computing elements that
make; up the network, and therefore in general much Ineger than the minimum
required to compensate for the aoninvertibility of the given function (cf. Section
4).

12

i

o SR v AR

LATY Vit

T R

TR

Yo

From the viewpoint of a physical implementation, where signsle are encoded
in some form of energy, each constant input entails the supply of energy of
predictable form, or work, and each garbage output entails the removai of energy
of unpredicveblc form, or heat, In this context, a realization with fewer source
and sink lines might point the way to & physical implementation that dissipates
less energy.

Our plan to achieve & less wasteful realization will be based on the following
concept. While it ir ‘rue that each garhage signal is “random,” in the sense
that it is not predictable without knowinz the value of the argument, yet it will
be correlated with other signals in the network. Taking advantage of this, one
can augment the network in such 8 way as to make correlated signals interfere
with one another and preduce a number of conséant signals instead of garbage.
These conatants can be used as source signals in c.ther parts of the network. In
this way, the overall number of both source and rink lines can be reduced. This
process is analogous to the destructive interfereice of, say, sound waves. It is
well-known that by superposing two correlated random signals one may obtain
an overall signal which is less “noisy" that either component.

In the remainder of this section we shall show how, in the abstract context
of reversible computing, destructive interference of correlated signals can be
achieved in a systematic way. For 2 similar process of destructive interference
to take place in concrete computers (thus leading to greatly reduced power
dissipation), one would have to match the abstract invertible primitives with
digital gates taht are macroscopically—as well as microscopically—reversible.
The arguments in [7,8,23] strongly suggest that such gates are indzed physically
realizable.

Returning to cur mathematical exposition, we shall first show that any in-
vertible finite function can be realized isomorphically from certain generalized
AND/NAND primitives, Then, we shall show that any of these primitives can be
realized from the Ann/NAND element possibiy with temporary stoiage but with
ro garbage.

For convenience, we shall say that an invertible finite function is of order n
if it has n input lines and n output lines.

Derinrrion 5.1 Consider the set B = {0,1} with the usual structure of
Boolean ring, with “@" {exclusive-or) denoting the addition operator, “&"
the additive-inverse operator (which in this case coincides with the identity
operator), and juxtaposition (anp) the muitiplicatien operator. For any n > 0,
the generalized AND/nAND function of order n, denoted by 6™: B — B, is

13

e E s I N e P

e O e 2

P,

defined by

Zy T
n L]
0] R 1 . (5.1
Tn—1 In—1
T Ot D 5123 30—y

Remark. {a) The G sign in (5.1), which is redundant (since ©zn = zn), has
been introduced for ease of comparison with the arguments of [23]. (b) For any
n > 0, ™ is invertible and coincides with iis inverse. (g) Fors == 1,2,...,n—1,
the i-th component of 8(, i.c., 6{, coincides with the projection operator for
the corresponding argument, i.e., 05")(21, «++1 %) = 2;. (d) The last component,
of 0, i.e., 6", coincides with the nor function for n = 1 (note that, by
convention, zj+--z; = 1 when { = 0), and with the exclusive-or of its two
arguments for n == 2. (¢) For all other values of n, 6 is still linear in the n-
th argument, but is nonlinear in the first n — ! arguments,

We have alceady encountered 0 under the name of the not element, 83
under the nzme of the xor/rFan-out element, and 6%) under the name of the
AND/NAND eicment. The generalized anp/nAND functions are graphically repre-
sented as iii Figure 5.1d,

() (b) (9) (d) =Sl S
T e T TR
i@i bl N Wi
% gl 7‘“/

NOT XOR/FAN-OUT AND/NAND generalized AND/NAND

Fic. 5.1 Graphic representation of the generalized anp/nanp functions.
Wanning: This representation is offered only asa mnemonic aid in recalling
a function's truth table, and is not meant to imply any “internal structure”
for the function, or suggest any particular implementation mechanism.
(s) 68, which coincides with the Nor element; (b) 6®), which coincides
with the xonr/ran.ouT element; {cg 89, which coincides with the AND/NAND
element; and, in general, (d) 6\, the generalized anp/NanD function of
order n. The bilsteral symmeiry of these symbols recalls the fact ¢hat each
of the corresponding functions coincides with its inverse.

4

B e S o M B S B 22 Aetenie R N s I TR A O A R

e TS T Aok, MEARERR S 4o

An invertibie function acts as a permutation on the elements of its domain,
and it is well known that any permutation can be written as a product of elemen-
{ary permutations, i.e., of permutations thst exchange exactly two elements.
In our attempt to synthesize arbitrary invertible functions of order n we shall
consider, as building blocks, elementary permutations on B™ and even more
basic permutations on B" called atomic permutations.

Dermurion 5.2 In the truth table for the Anp/NAND element (3.5), observe
that the only difference between the lefi- and the right-hand side of the tabie
is that exactly two rows (namely, {0, 1,1) and (1,1, 1)) which have a Hamming
distanceof 1 (i.c., differ in exactly one position) have been exchanged. An atomic
permuter is any function having this property.

Any atomic permuter of order 1 can be constructed from the generalized
AND/NAND element of order n by appending NoT elements to some of the input
lines and to each of the corresponding output lines, asin Figure 5.2a. Graphically,
this permuter will be represented as in Figure 5.2b, where some of the inputs
to the anp-gate symbol are negated (as denoted by a little circle).

(& SN0

F1e. 5.2 (a) Censtruction and (b) graphic representation of a particular
atomic permuter.

Tueorem 5.1 Any invertible finite function of order n can be obtained by
composition of stomic permuters of order n, and therefore by composition of
generalized anp/NAND fuactions of order < n.

Proof. 1t will be sufficient to show that one can obtain any elementary
permutation on B™.

In a table of all elemends of B", a sequence of table entries a5, a3, ..., 6, (these
are all n-tuples) are said to form a Gray-code path if any two entries that are
adjacent in this sequence are related by an atomic permutation, Consider the
pair of entries 2 and y that we wish to exchange, o..d consider a Gray-code path

15

1Y S Tk A TR B s MRS L

iy

ALY

from z to y (such a path exists for any pair z, y). It is easy to verify that by
means of sequence of atomic permutations item = can be moved to the end of
the path, while the remainder of the path is shifted one position to the left but
is otherwisz unchanged. In a similar way, y can be brought to the beginning
of the psth. Thus = and y can be exchanged by mezus of a sequence of atomic
permutations without affecting the zeat of the table.§

Remark. Note that the realization referred to by Taeorem 5.1 is an isomor
phic one (unlike that of Section 4, which makes use of source and sink lines).

Tueorem 5.2 There exist invertible finite functions of order n which cannot
be obtained by composition of generalized anp/nano functions of order strictly

less than n.
Proof. In the context of the proof of Theorem 5.1, when 6 is applied to

_ any i components of B this set is divided into 2" disjoint collections of 2

n-tuples, and each collection is permuted by 67 in an identical fashion. Thus,
only even permutstions can be obtained when § < n. Since the prodect of even
permutations is even, only even permutations can bz obtained by onc-to-one
composition of any number of ann/nanD functions of order less than n.8

Remark. According tothis theorem, tle AND/NAND primitive is not sufficient
for the isomorphic reversible reelization of arbitrary invertible finite functions
of larger order. This result can be generalized to any finite set of invertible
primitives, as implicit in the proof argument. Thus, one must turn to a less
restrictive realization schema involving source and sink lines.

Tueorem 5.3 Any inveriible finite function can be realized, possibly with
temporary storage, [bui with no garbage!] by means of a reversible combina-
tional network using as primitiv:s the generalized anp/nano elements of order
<3

Proof. In view of Theorem 5.1, it will be sufficient to reali~e (possibly with
temporary storage), for each n, all atomic permuters of order n. Since these can
be realized isomorphically from 8() and 6 (cf. Figure 5.2), it will be sufficient
to realize 8™ jtsell. We shall proceed by recursion; namely, given 6(>—1), 6(")
can be realized with one line of temporary storage as follows.

Construct the network cf Figure 5.3, which contsins two occurrences of
51 and one occurrence of §¢%), Observe that ¢ = ., since every generalized
AND/NAND element coincides with its inverse (a... thus the serond cccurrence of
6 -1 cancels the effect of the first). Therefore, the pair {{c}, {c'}) constitutee
2 temporary-storage channel. When ¢ == 0, the renaining variables behave as
the corresponding ones of 8,5

18

Prs el AV Sl A AR S

e S 3 AL R T =N

Sy Sl

T AV I PN Py

2 A

L. LR S X LY N,

AL

B e I

e e v ~ m e S o o .-

) Yy
o W
3 W

Y
4

D v

&

Fic.5.3 Reslization with temporary etorage of 8™ from 6*—1) (and 0),
In this network, when ¢ = 0, also ¢ = 0, and the remaining components
behave as the corresponding ones of 6",

In the above construction, it is clear that one line of temporary storage is
added every time that one realizes the anp/rann funciion of the next higher
order. Thence the following theorem.

Tueorem 5.4, In Theorem 5.3, let ri be the order of the given invertible
function, and m the number of souzce (as well as sink) lines required required for
temporary-storage channels in the realisation. Then m need rot exceed n —3.
If only 6@ is given as & primitive, then m need not exceed 3n — 3.

Remark. The second part of this theorem reflects the fact that additional
temporary-storage lines are needed to realize NoT from anp/NaND (cf. (3.8)).

The proof of Theorem 5.3 establishes a general mechanisms for bringing
about destructive interfeience of garbage. With reference to Figure 5.3, which
can serve as an outline for the general case, observe that the left portion of
the network is accompanied by its “mirror image” on the right. The left por-
tion computes an intcrmediate result {on the line running from ¢ to &) that is
needed ae an input to the lower portion and 1s returned by it unchanged. Having
performed its function, this intermediate result is then “undone” by the right
portion, so that no garbage is lelt.

The reader may refer to [3,7) for more specific examples of destructive in-
terference of garbage.

Taken togeiher, Theorems 5.3 and 5.4 have an interesting interpretation
from the viewpoint of complexity theory. They imply a trade-off between the
number of available primitives and the availability of an appropriate amount of
a resource that, as we shall presently explain, can be intuitively identified with

17

temporary storage (heace the term “temporary-storage channel” introduced in
Section 3.)

Following the lines of the proof of Theorem 5.3, any invertible function f
{Figure 5.4a) can be realised by a network of the kind lllustrated in Figure 5.40
{(where only some relevant detalls have been indicated),

(a) (b)
Iy - . ()‘ e i
clal bl bt a !
e I Y - A Al mfn\CD Fan 3"()
Z, - - Cp - £ = (}
n Yn t : N2 ANy \r’\ij A 1
: ¢ .
P N S N %

Fic.5.4 If instead of an ad hoc reversible mechanism (a) for the invertible
function f one secks a mechanism baved on the AND/NAND primitive, as in
(b), auxiliary constant input eignals sre required. Such signals are returned
unchanged ai the output.

Let us consider the process of traversing the box of Figure 5.4b from leit to
right. Each line running thzough th: box represents the evolution of a binary
storage element. In general, all the constants entering the box will be repeatedly
written over as they traverse the box itself; yet, they will emerge from the box
with the original values. In this context, & temporary storage channel {such as
the pair ({e1,..., ¢}, {c}, ..+, 6,})) repctents a “scratchpad” register which is
initialized to an assigned state (say, all 0's) and is invariably restored to the
original state before the end of the computation. (Though more general, this
behavior is analegous to that of the reversible Turing machines described by
Bennett[4] and briefly discussed in Section 7.)

In this context, Theorem 5.2 can be interpreted as saying that, for & given
choice of reversible primitives, it may be impossible to carry out the computation
of a given invertible finite function if one is restricted to working on a register of
size just enough to contain the argument (cf. the limitations of linear-bounded
automata). On the vther hand, Theorem 5.3 says that this difficulty visappears
&3 goon 48 one permits the use of an auxiliary temporary-storage register of
appropriate size.

The following list (cf. Figure 5.5) sums up in a schematic way the
input/output resources of which a reversible network must avail itsell in order

18

R R s RS AR S

e

to be able to compute a finite tunction ¢,

(a) argument - reselt
(b) constants »“’ ~- garbage

(c) =- temporary storage channcls ~»--
(d) constants ---{ }-»—- garbage

Fig. 5.5 Classification of input aud output lines in & reversible combina-
tional network, according to their functios. (aj Arguraent and result of the
intended computation. (b) Constant and garbage lines to account for the
nonipvertibility of the given function. (c) “Temporary storage” registers
required when only a restricted set of primitives is available. (d) Additicnal
constant and garbage lines required when in designing the network one
chooses not to take full advantage of the correlation between internal
streams of data, and thus looses opportunities to bring sbout destructive
interference of garbage.

{(a) It ¢ is invertible, and the use of ad huc primitives is allowed, ther no
source or sink lines ars necessary,

{b) If ¢ is not invertible, it is necessary to provide source lines to be fed with
specified constants and/or sink lines which will produce garbage,

(c) Independently of the invertibility of ¢, if only a restricted set of primi-
tives is allowed it may be necessary to supply temporary-storage chanmels (i.e,
additional source lines Yo be fed with constants and an equal number of sink
lines which will return constants).

(d) X, is order to simplify the mechanisni, one chooses to ignore that cer-
tain streams of garbage within the mechanism are correlated and thus could be
subjected to destructive interference, then further source and sink lines will be
required, as in (b).

8. Conservative logic

In view of the considerable exertions that were necessary in the previous
sections in order to obiein a bona fide realization of mechanisms having universal
logic capabiliti-s aad al the same time satisfying the »+ersibility constraint,
ane vugit wnnder whether nontrivial computation would be possible at sl if
evtacantial further constrainte were imposed.

Actualiy, it turna oul shat univereal logic capabilities can still be obtained

" 7w if one restricts one's attention to combinational networks that, in addition

18

Bens v o e e S RERS BRI TSR SR RS

to being reversible, conserve in the output the number of 0's and 1's that are
present at the input. The study of such netwirks is part of a discipline called
, conservative logic® {7] (also cf. [11]). As 3 matter of fact, most of the resulis
of Sections 4 and 5 were originally derived by Fredkin and associates in the
context of conservative logic.

In conservative logic, all data processing is ultimately reduced to coaditional
routing of signals. Roughly speaking, signals are treated as unalterable objecis
that can be moved around in the course of a computation but never created or
destroyed. The physical significance of this principle will be discussed shortly.

Tke basic primitive of conservative logic is the Fredkin gate (cf. [76]), defined
by the tabie

cnm duwm
000 000
00 1 010
o1l _ 011
100 100" ©.1
101 101
110 110
111 111

%
é
g
&
3

This computing element can be visualized as a device that performs conditional
crossover of two data signals a and b according to the value of a control signal
¢ (Figure 8.12). When ¢ == 1 the two data signals follow parallel paths, while
when ¢ = @ they cross over (Figure 8.1b).

(a) (b)
c 1 10 0
[S o [a a = > b
5 .;__m’.f:k—»— b b b F"'><'h" a .

Fic. 8,1 (a) Symbol and (b) operation of the Fredkin gate.

In order to prove the universality of this gate as a logic primitive for reversible
computing, it is sufficient to observe that ANp can be obtained f.om the mapping

*Besides a combinational primitive (the "redkin gate discussed brlow), conserva-
tive logic also posits a communication/memory primitive (the unit wire), Together,
these two primitives are sufficient to account for sequential computation. Moreover,
they provide a basis for a theory of computation complexity which incorporates
ceriain important physical-like constraints that are usually neglected.

20

NYPRIPURIUIEINE SR PR VN R TSI Lo

A 4

U AR S AR ¢ s s % s o o o A e 4 S m e

{,q,0} — (v, pq, Pq), and Nor and Fan-our from the mapping {p, 1,0) ~ (p, p,).

There exists only one other 3-input, 3-output conservative-logic element: that
can be used a5 a universal primitive; this is the symmetric majority /parity gate
(smr) defined by

Ty z 4y 4
6009 200
001 1 ¢0
01! i3
100 510 ©2)
101 011
110 101
111 111

Intuitively, in the smp gate the three signals are rotated in one direction if their
overali parity is even, and in the other direction if it is odd. While the sap gate
can be realized isomorphically by means of Fredkin gates, a realization of the
latter by the former requires a temporary-storage channel. In this sense, the
Fredkin gate is the most elementary conservative-logic primitive—since no 2-
input, 2-outpu’ invertible function is universai.®

Finally, the Fredkin gate can be realised {somorphically by meens of
AND/NAND gates, as shown ia Figure 8.2,

R
%

U

g

Fic.8.2 Isomorphic realisation of the Fredkin gate by means of AND/NAND
gates,

It is important to realize that, far from representing merely an elegant tovr
de-force in the theory of reversible computing, conservative logic provides an es-
sential connection between that theory and the physics of computing circuits. In

¥An cven more clementary conservative-logic primitive, namely, the Interaciion
gate[T], can be obtained if one considers invertible function whose domain and
codomain coincide with a proper subact of a set of the form B™.

28

Ta

fact, while in any reversible system whatsoever there are 2 number of conserved
quantities, in physical system many of these quantities are required to have a
special structure. For instance, energy, momemium, and angular momentum
are additive (this reflects certain symmetries of space and time). Intuitively,
reversibility by itself is not sufficient to give enough physical “flavor” to a theory
of computing.

In a conservative logic circuit, the namber of 1's, which is conserved in the
operstion of the circuit, is the sum of the number of 1's in different parts of
the circuit. Thus, this quantity is additive, and can be shown to play a formal
role analogous to that of energy in physical systems. Other connections between
conservative logic and physics will discussed in more detail in [7]

In conclusion, conservative logic represents a substantial step in the develop-
ment of a model of computation that adequately refiects the basic laws of physics.

1. Reveralble sequential computing

In Sections 4 and 5, we started from a certain computing object (viz., a
finite function), and we discussed the conditions for its reversible realization
first (a) as an object of the same nature (viz., an invertible finite function)
treated as a “lumped” system, thus stressing functional aspects, and then (b) as
3 “distributed” system {viz., a reversible combinational network), thus stressing
structural espects and paving the way for a natural physical implementation.

By and largs, we shall follow a similar plan in dealing with the more com-
plex computing objects that constitute the paradigms of sequential computing,
namely, finitc automata (in the present scction), Turing machines {Section 8),
and cellular sutomata (Section 9).

First, we shall make a few commemts on sequential computing in general.

In Section 2, we defined an abstract computer as a function-composition
scheme. Some of these schernes possess a regular structure of & certain kind,
namely, they are time-iterative,* and with appropriate copvzntions can be rep-
resented much more compactly in terms of sequential networks {c!. [9]).

*It the partial-order relation beiween arcs that is induced by the function-
composition operation is interpreted as a causal relationship between signals, then
certain other relations between arcs are naturally interpreted as referring to spatial
and temporal relationships. In this context, a causal network may possess certain
automorphisms thet may be interpreted as time shifts, and in this case the network
is ¢time-iterative, similarly, it may possess sutomorphisms corresponding to spatial

shifts, and in this case it is space-iterative.

2

%

Consider, for definiteness, the iterative function-composition scheme

filige sicim
explicitly represented by the infinite causel network of Figure 7.1.
Lt i
! 42

Y
F1a.7.1 A function-composition scheme baving a time-iterative structure.

The same scheme can be represented by the finite sequential network of Figure
7.2. By comparing this figuse with Figure 7.1, it is clear that the role of the so-
called “delay elements” in a sequextial tetwork ls to mark ou’ those places that
correspond to the boundary between one stage and the next in the equivalent
time-iterative combinational nstwork,

z Y

q
~—{dclayl

F16.7.2 The same function-composition scheme ar represented by & finite
sequential network.

<. the previous sections, for the sake of realization arguin -~'s we have treated
a finsie function as a combinational network consisting of a siny le node. Similarly,
we shali + =at ¢ fnite automaten as a sequential network whose combinatioral
part cong. % of a single node, representing the automaton's transition function.
Thus, for + saunple, the nebwork of Figure 7.2 can be identified with the finite
automaton {»,4) ~ (@ ¢z D).

2

Finally, recalling that a computation is a solution of a function-composition
scheme (cf. Section 2), let us note that one is usually not interested in arbitrary
solutions; rather, one seeks solutions corresponding to particular boundary con-
ditions (defined, for instance, by assigning specified values to the input lines).
Moreover, in the case of a time-iterative scheme, one is usually interested only
in that portion of the scheme whose elements are indexed by ¢ > % (for an
arbitrary i). The assignment of specified values to the new input lines that
are created in this way (i.e., by “cutting” the network in hall) correxponds to
initializing the delay elements in the sequentisl-network represeatation,

By definition, a finite automaton is reversible if its transition function is
invertible. Thus, in order to realize a finite automaton by means of a reversible
Z~an=ntirl network, it will be sufficient to take its transition function, construct
a reversible realization of it, and use this as the combinational part of the desired
sequential network. The problem of reversibly realizing an arbitrary finite func-
tion has been solved in Section 4. Thus, we havz the following theorem.

Teorem 7.1. For every finite automaton r: X X Q=@ X Y, where X ==
B™, ¥ == B", and @ == BY, there exists a revesible finite automaton §: (B7 X
B™) X B®— BY X (B" X B"t™"), with r < n-u, suck that

r
o,

‘s‘(oy-'—;oyxln-"%»mv-'-»qti)"Ti(zh'--;swmv'"vqu)' (§ e L,...,u$n)

In other words, whatever can be computed by an arbitrary "nite automaton
according to the scheme of Figure 7.3a can slsc be compuisd by a . .vzrsible
finite automaton according to the schems of Figure 7.3b.

24

4 e ahaies & ol TR maw-f.‘:&;

e i,

R

TR

2 IVNTA TR e v v onimeta F A e v a e bl

(a) (b) source 1

input—— arbitrary output input ~— invertible output
old state finite new state finite
function, function
*sink
| delays
b delays

Fic. 7.3 Any finite automaton {a) can be realized as a reversible finite
automaton (b) having a number of auxiliary input lines (source) which are
fed with constants and a number of auxiliary output linee (eink) whose
values are disregarded.

The following theorem, which from a mathematical viewpoint is trivial, is
a restatement of the eecond law of thermodynamics. Recail that »q automaton
is closed if X == {A} (i.c., there are no input lines); open, otherwise,

Tueoren 7.2 If a closed, finite automaton is not reversible, then it does
not admit of a reversikle realisation ¢hat is both closed and finite.

Proof. Given a nonreversible automaton r: @ — @, assume that ¢: P— P
be a reversible realization of 7. That is, we assume the existence of sn invertible
finite function ¢ and of two maps u and v (respectively, the encoder and the
decoder) such that, for all >0,

vt = 7S, (1.2)

Since automaton ¢ is finite and reversible, for any p € P there exists an 4, >0

+ such that t%(p) = p. Thus, for any ¢ € Q, 1*Du(g) == vy(g). But, in view of

(7.2), up(g) = q and vt»@p(g) == r*G)g), As a consequence, 7%(9)(g) == g for
all g. On the other hand, since sutomaton 7 is finite and aonreversible, there
must be &t least one 7 € @ such that 7%(7) 9& g for all § > 0. Thus, the cziginal
assumption leads to a cor tradiction.§

Remark. According to Theorem 4.1, noninvertible functions can be com:.
puted by a reversible system provided that a supply of constants is mads avaii-
able. in an open system, this supply may come from some input lines, In a

25

[.

closed syatem, in order to perform a computation in one part of the system one
may draw constants from another part, for instance, the indefinitely extended
blank tape of a Turing machine {cf. Section 8). However, if the system ie also
finite, this supply will eventually run out.

Thus, the interpretation that a finite, closed, and reversible system “is
modeling an irreversible process” can only be maintained for particular initial
conditions and on a space-time scale that is limited with respect to that of the
entire system,

Having discuszed the reslization of finite sutomata by means of reversible
finite automata, we turn now to the realization of finite automata by means of
reversible finite sequential networks based on given primitives.

It is clear that all the arguments of Sections 5 and 8 concerning finite func-
tions immediately apply to the transition function of any given finite automaton.
In particular, in analogy with Figure 5.5, every finite automaton can be realized
by a finite, reversible sequential network based on, say, the AND/NAND primitive
and having the following form (ﬁFixure 7.4)

ource *
input ——se—y reversible ———— output
finite
old state new state
network
---- temp. stor. channels---

T
Ysink

—— delays |

s delays —————

Fie. 1.4 Heslisation of & finite automaton by means of & finite, reversible
sequential network.

In order to insure the desired behavior, the state components represented by the
temporary-storage channels must be initialized once and for ail with appropriate
values (typically, all 2's), while the source must be fed with appropriate constants
(typically, all 0's) at every sequential step.

In a conventional computer, power dissipation is proportiona! to the number
of logic gates. On the other hand, the number of constants/garbage lines in

28

Figure 7.4 is at worst proportional to the number of input/output lines (cf.
Theorems 4.1 and 5.3). From the viewpoint of a physical implementation, where
signals are encoded in some form of energy, the sbove schema can be interpreted
as follows: Using invertible logic gates, it is ideally possible to build a sequestial
computer with z:ro internal power dissipation. The only source of power dis-
sipatiza arises outside the circuit, typically at the input/output interface, if the
user chooses to connect input or cutput lines {o nonreversible digital circuitry.
Even in this case, power dissipation is at most propottional to the number of
argument /result lines,* rather than to the number of logic gates (as in ordinary
computers), and ie thus independent of the “complexity” of the function being
computed, This constitutes the central result of the present paper,

8. Reversible Turing machines

We shall assume the reader to be familiar with the concept of Turing machine.
From our viewpoint, a Turing machine is a closed, time-discrete dynamical
system having three state components, i.c., (a) an infinite tape, (b) the internal
state of 2 finite automaton called head, and (c} a counter whose content indicates
on which tape square the head will operate next. Let T, H, and C be the sets
of tape, head, and counter states, respectively. A Turing machine is reversible
if ite transition function 7: T X H X C— T X H X C is invertible.

It is well kiown that for every recursive function there exists 2 Turing
machine that computes it, and, in particular, that there exist computation-
universal Turing machines. Are these cupabilities preserved if one restricts one's
atiention to the class of reversible Turing machines?

The answer to the above question is positive. In fact, in {4] Bennett exhibits a
procedure for constructing, for any Turing machine and for certsin quite general
computation formats, a reversible Turing machine that performs essentially the
same computations. (The concept of “reversibility” used by Bennett is weaker
than ours, insofar as the transition function and its inverse are defined only on
distinguiched subsets of tape/head/counter states, and even among these states
there are some with no predecessors and others with no successors; however, the
transition rules of Bennett's machine can easily be augmented so as to satisly

*In fact, the free energy that must be supplied is at most that in which the input
constants are encoded, and the thermal energy that muet be removed is at mosat
that of the garbage outputs. According to Theorem 4.1, the number of constant
lines need not be greater than that of result lines, and the number of garbage lines

need not be greater than that of argument lines.
i

o, Ao

I S

[P

cur stronger definition. We shall assume this augmenting procedure to heve
been carried out.)

In order to obtain the desired behavior, Bennett's machine is initialized so
that all of the tape is blank except for one connected portion representing the
computation’s argument, and the head is set to a distinguished “inivial” state
and positioned by the argumeni's first symbol. At the end of the computation,
i.e., when the head enters a distinguished “terminal” state, the result will appear
on the tape alongside with the argument, and the rest of the tape will be blank.

Thus, a number of {aps squares that are initially blank will eventually
contain the resull. These squares [ulfill a role similar to that playcd by the
conetants/garbage lines in Section 5, in the sense that they provide a sufficient
supply of “predictable” input values (blanks) at the beginning of the computa-
tion, and collect the required smouvut of “random” output values (in this case, &
copy of the argument—c!. the first row of (4.2)) at the end of the computation.

Moreover, during the cemputation a number of originally blank tape squares
may be written over and eventusally erased. These squares fulfill a role simiar
to that played by the temporary-storage lines in Section 5 (cI. the discussion
centered on Figure 5.4).

It is clear that, like the constants in the reversible combirational networks
of Sectinn 5, the blanks in Bennett's machine play an essential role in the com-
putstion, since without their presence one could not achieve universaiity and
severoibility at the same time. Intuitively, compatation in reversible sysiems
requires & higher degree of “predictability” about the environment’s initial con-
ditions then computstion in nonreversible ones.

Owing to the “hybrid” nature of 8 Turing machinc, which invelves several
kinds of computing primitives (an active device, viz., the head, a passive device,
viz., the tape, and mechanisms for head-tape interaction and for head move-
ment), it is difficult to discuss the realizability of a Turing machine by means
of a reversible, distributed computing mechaniem before having expressed the

. above primitives in terms of fewer and more elementary ones. For this reason,

we shall deal with this problem at the end of the next section, when suitable
tools will have been introduced.

8. Reveraible cellular sutemata

We shall assume the reader to have some familiarity with the concept of cel-
lular automaton {cf. [21] for details and references). Fiem a physical viewpoint,
cellulnr automata are in many respects more eatisfactory models of computing

28

s st WA MR 2SR § St st $ 0t f il 4 N

~ vy

processes than Turing machines; in particulaz, they allow one to represeat hy
means of the same mathematical machinery and at the same level of abstraction
not only a computer proper but also its environment, the interface with its
“users,” and the “users” themselves[22]. A cellular automaion is in essence a k-
dimensional (k > 1) array of ideatical, uniformly interconnected finite automata,
and constitutes & closed, time-diccrete dynamical system whose state set is &
countable Cartesian product of finite seis and whose transition function is con-
tinuous {in ike topological sense) and commutes with the translations (i.e., with
the elements of the array's symmetry group). A celluler zulomaton is reversible
if its transition function is invertible.

1t is well known that there exist cellular sutomata that are computation-
and construction-universal. Are these capabiliiies prescrved if one restricts one's
attention to the class of reversible cellular automata? The answer to the above
question is positive. In fact, in [20) Toffoli exhibiiz a procedure for construct-
ing, for any ceilular automaton (presented as an infinite, sprce-iterative sequen-
tial network), a reversible cellular automaton that realizes it. (Note ihat until
then the existence of computation- and construction-universal reversible cel-
lular automata—which is thus establiched—had been doubted or, by erroneous
argumente, outright denied.)

Assuming the original cellular automaton M o be one-dimensionsi and with
the von Neumann neighborhood (Figure 9.1a), with Toffoli's construction one
obtais a two-dimensional cellular automaton M in which the fow of informa-
tion between thc slements of the array (or cells) can be visuellzed & in Figure

9.1b.
T

-
{1

Fic. 9.1 Information flow (aj ir & given onc-dimensional cellulsr
auntomaton M, and {b) in the corresponding éwo-dimensional, zoversiblo
realization M.

Each row of M coastitutes 2 reversible (infinite) automaton which s, of course,
open. Let us consider a particular row p. In analogy with Figure 7.3, let ue
interpret the arrows entering a row from above {in Figure 8.1) as zource lines,

%

TR A

T

5

TR Ty T e R N ST S R R R R T A N

o, BIUY RIS AT IR AR S 5 0.4

e ot eSS v O T ok TP S SO

and the ones lesving it from below as sink lines. By construction, wher the
source lines are fed with particular constant values (all 0's) and the values on
the sink lines are ignored, the “row” automaton will behave 25 M. In order
for A to constitute a reversible realization of M, ons must guarantee that p's
source lines are fed with 0's at ali time steps ¢ > 0, But, by construction, if s
row is initialized to a distinguished blank state and its source lines are fed with
0's, then the row will remain in the blank state and its sink lines will produce
0's. Thus, if sll of the rows that lie above p are initialized to the blank state
{Figure 9.2), an inexhauetible supply of 0's will “rain down" into p. At the same
time, p's sink lines will produce garbage that will spread down and sideways
through the rews below p, while p itself will reproduce M’s behavior,

wlﬁ.w lW\ l :,,l~
: inﬂqw ofconstanta\f
— B ok Seimulation of Mi} <7 1
p o :ﬁsnmula iono o
f‘)!\x‘tﬂéx;'ofwgta\;l;a;;
vl A PR
» i

F16.9.2 With proper initislization, the reversible iwo-dimensional celiular
automaton M realizes the one-dimensional automaton M, which may be
irreversible.

In Section 5, we saw that, starting from a fixed, finite set of invertible logic
primitives, one cannot obtain an igsomorphic invertible realization for every in-
vertible finite function; rather, in general one mast be allowed to use ad-hoc
primitives (possibly as “complex” as the function itself) or introduce temporary-
storage channels (thus giving up isomorphism). Similar considerations apply to
finite automata.

Consider now a reversible cellular automaton M. M can always be realized
as & reversible sequential network with temporary sterage. Is it possible to con-
struct an isomorphic reversible realization of M if oae is given a free hand in
the choice of primitives? Surprisingly, the answer to this question is negative
{Theorsm 9.1 below).

Lemma 6.1, Les m be the number of binary state variables associated with
each cell of a cellular automaton M, and n the size of ite neighborhood. A neces-

3n

-

A FE T Al

K42 Ay b

2t

sary condition for the isomorphic realizability of M a3 a reveraible sequential
network is that m > n.

. Proof. We shall skeich the proof for a one-dimensicnal cellular automaton
M with m = 1, nn == 2, and neighborhood index (0, —1) (i.e,, the next state of
cell ¢ will depend on the current state <! cell § itself and of cell § — 1, that is,
its “left” neighbor , Assume that the required realization M exists; it will have
the form of Figure 8.3a.

(a) (b)__
= 1. “

combinational network ! --

Fic. 8.3 (a) Overall structure of the {assumed) isomorphic reversible
realization of M. Details of the combinational part of euch realizsation: (b)
paths from each cell to itself, (c) paths from each cell to ite right neighbor,
and (d) nodes implicd by the existence of auch paibs.

Since each cell is “affected” by itself, there will be paths in the combinational
part of M as in Figure 9.3b; similarly, since each cell is “affected” by its left
neighbor, there will be psths as in Figure 9.3¢c. Thus, there will be nodes as in
Figure 9.3d. These nodes cannot stand for inveztible primitives (note fan-in 2t p
and fan-out at ¢) unless furtier arcs exist (nzmely, an additional arc entering p
aud one leaving g). Tn turn, these arcs imply the existence of new nodes—and so
on ad infinitum—since connecting these arcs to one another would violate the
partial ordering {“causality”) associated with function composition). Clearly, it
is impossible to complete the construction without intro? Ing either cycles oz
paths of infinite length.B

Tucorem 8.1 There exist reversible cellular automata that do not admit
of an iruwtorphic reversible realization.

Proof. In {2}, Amoroso and Patt exhibit reversible cellular avtomata {more

3t

amply discussed in [21}} with m == { and 1 =< 4. The thesis follows from Lemma
e.1.8

Finaily, it is well known that any Turing machine can be embedded in a
suitable celiular automaton, Thus, according to the feregoing discussion, any
Turing machine can be realized by an iafinite reversible sequential nework.

19. Conelusions and perspectives

What properties of an abstract computing system are critical in determining
whether or not it can carry out a given task? To give an example, it is known thai
linearity is incompatible with computation universality[15]. Many other issues,
dealing, for instance, with monotonicity, finiteness of sicrage, availability of
constants, etc., have been discuased extensively in the past and are essentially
settled. On the other hand, only recently has some light been thrown on the

. question of to what extent the imposition of the reversibiiity constraiut affects

the computing capabilities of a system. The sustained debate on this issue has
been fueled and at times confused by obvious connections with certain physical
questions,

In this paper, we have laid down the foundations for the theory of reversible
computing, i.e., a theory of computing based on invertible primitives and com-
position rules that preserve invertibility, and we have shown that this theory can
deal satisfactorily with both the functional and the structural aspects of com-
puting processes. In particular, those structures that constitute the traditional
paradigms of the theory of computing, such ag combinational and sequential net-
works, finits automata, Turing machines, and cellular automata, have been as-
certained to have reversible counterparts of equal computing power. (Analogous
considerations apply to systems of difference equations, as will bz shown in a later
paper.) Thus, the choice to use reversible mechanisme in describing computing
processes is a viable one. What can be gained from this choice?

In the synthesis of an abstract computing system for a given task, the re-
quirement that the system be reversible can in general be met only at the cost
of greater structural complexity. In other words, one may need more {but not
many more) gates and wires. However, the system's very reversibility premises
to be a key factor in leading to a more efficient ph; sical realizaticn, since, at
the microscopic level, the “primitives” and the “composition rules” available
in the physical world resemble much more closely those used in the theory of
reversible computing than those used in traditional logic design. For example,
it appears that couservative logic might be completely modeled by processes of
elastic collision between identical particles(7].

32

- B £ D e ERMAABIIG i mr53, i - —

Besides questions of efficient impiementation of computing systems, there
are several other research lines to which the concepis of reversible computing
may give a substantial contribution. Here, we shall limit curselves to naming
a few on which some preliminary investigations have been carried out, such
a8 error detection; numerical analysis and, in particular, the integration of
differential equations; number theory and the factoring of large integers; second-
order automata and state-reduction techniques; synchronization of computing
processes; and cellular automata and the modeling of fundamental physical laws.

The main reason why the concept of reversibility is so pervasive is the fol-
lowing. In every reversible system there are a number of quantities (functions of
the system's state) which are conserved, i.e., which are constant along each of the
system's trajectories (cf. the “integrals of the motion” of theoretical mechanics).
Both in mathematical and in physical research, experience has shown that many
interesting properties of a system can usually be expressed in $erms of conserved
quantities, and on this basis one can often make nontrivial statements about the
behavior of & system oz a class of systems without having to go into a detailed,
case-by-case analysis of their operation.

Thus, in the more abstrect context of computing, the laws of “conservation
of information” may play & role analogous to those of conservation of encrgy
and momentum in physics.

11, Hiatorics] and bibliographical notes

The computing element known as the ‘Fredkin gate” was apparently first
described by Quine as an abstract primitive, and was known to Petri{10]. Some
coneervative (but not reversible) circuits using complementary signal streams
were discussed by von Neumann|25] as early as 1952, More recently, Kinoshita
and associates|[11] worked out a classification of logic elements that “conserve” 0's
and 1's; their work, motiv=t- { by research in magnetic-bubble circuitry, men-
tions the possibility o1 ..u.v ¢ nergy-cfficient computation, but has apparently
little concern for reversibility.

The anD/NAND element was known to Petri[10], and was mentioned en pas-
sant, in the context of reversibility arguments, by Landauer[12}. The generalized
AND/NAND functions were introduced by Toffoli[20] for proving the universality
of reversible cellular automata.

Doubts about the co.tputetional capabilities of reversible cellular automata
were first expressed by Moore[18}, and more formally stated as a conjecture
by Burke[5]. Other parties 1 the debate were Smith{18}, Amoroso and Patt[2],
Aladyev(1], and Di Gregorio and Trautteur(6)].

3

T T o T i e o P B R R L

P T

Distributed aystems which are not reversible per se, but in which
computation-universal, reversible structures czn be embedded by proper in-
itialization, were described by Priese[17].

The idea that universal computing capabilities could be obtained from re-
versible, dissipationless (and, of course, nonlinear) physical circuits apparently
first ocenired to von Neumann, as reporied in a posthumous paper{28]. This
idea was also aired by Bennett|[4], with somc support from his construction of
reversible Turing machines. A more formal proof of the physical realizability of
such cirerits was given by Toffoli[23], and some conrrete though not yet entirely
practical approaches are outlined in [8). A much more promising approach, based
on the interaction gate, has been recently suggested by Fredkin|7].

Owing to the interdisciplinary nature of the subject, ii is quite difficult to
locate, evaluate, and credit all research results that may somehow be relevant
to reversible computing. We shall appreciate any contributions to the above
bibliographical notes.

Acknow!edgments

As acknowledged in the text, many ideas discuszed in the present paper were
originated by Prof. Edward Fredkin, Aside from this, I wish to thank him for
much usefu] advice and encouragment,

List of references

{1} Acapymv, Viktor, “Some Questions Concerning Nonconstructibility and
Compatability in Homogeneous Structures,” Izv. Akad. Nauk. Estonian
SSR, Fiz.-Mat. 21 (1972), 210-214.

[2] Amoroso, Serafino, and Parr, Y. N., “Decision Procedurcs for Surjectivity
and Injectivity of Parallel Maps for Teszellstion Steuctures,” J. Comptr.
Syst. Sci. 8 (1972), 448-464.

(3] Banron, Edward, “A Reversible Computer Using Conservative Logic,”
8.895 Term Paper, MIT D'ept. of Electr. Eng. Comp. Sci. {1978).

[4] Bennerr, C.H., ‘Logical Revesibility of Compuiation,” IBM J, Res, Dev.
¢ (1973), 525-532.

[5] Busaxs, A. W., “On Backwards-Deterministic, Erasable, and Garden-of-
Eden Automata,” Tech. Rep. no. 012520-4-T, Comp. Comm. Sci. Dept.,
Univ. of Michigan (1971).

34

T

e e b MR S RRRR S A R

AN St 2

et e s S S

L]
M

8

(9}

[10]
[11]

(12]

(13

[14)
(15}
(18]
(17]
(18]
(19]

(20}

l21)

(22)

D1 Greconio, Salvatore, sad Traurtaur, Giorgio, “On Reversibility in
Ceilular Automata,” J. Comptr. Syst. Sci, 11 (1975), 382-391.

Freowxn, Edward, and TorroLt, Tommaso, “Conservative Logic,” (in
preparation). Some of the material of this paper is tentatively available
in the form of unpublished notes from Prof. Fredkin's lectures, collected
and orgarized by Bill Silverin a 8.595 Term Paper, “Conservative Logic,”
MIT Dept. of Electr. Eng. Comp. Sci. (1878).

Frepian, Edward, and Torrou, Tommaso, ‘Design Principles for
Achieving High-Performance Submicron Digital Techaologies,” Proposz!
to DARPA, MIT Lab. for Comp. Sci. (1978).

Henns, C. H., Iterative Arrays of Logical Circuits, John Wyley and Sons
(1981).

Hovr, Anatol, Personal communication (1979).

Kivosiita, Kozo, et al, “On Magnetic Bubble Circuits,” IEEE Trans.
Computers T-25 (19786), 247-253.

Lanpauer, Rolf, “Irreversibility and Heat Generation in the Computing
Process,” IBM J. 5 (1961), 183-191.

Lanpaver, Rolf, “‘Fundamental Limitaticns in the Computational
Process,” Tech. Rep. RC 6048, IBM Thomas J. Watson Res. Center
(1978).

Mackpy, G. W., Mathematical Foundations of Quantum Mechanics, W.
A. Benjamin (1963).

Meyeg, J. D., and Zeicrer, B, P,, “On the Limits of Linearity,” Theory
of Machines and Cemputation, 228-242, Academic Press (1971).

Moorg, E. F., “Machine Models of Self-Reproducticn,” Proc. Symp. Appl.
Math. (Amer. Math. Soc. 14 (1962), 17-33.

Prupsg, Lutz, On a Simple Combinatorial Structure Sufficient for Sublying
Nontrivial Self-Reproduction, J. Cyberaetics 8 (1976), 101-137.

Ssrrh, A. R. I, “Cellular Automata Theory,” Tech. Rep. no. 2, Stanford
Elecir. Lab., Stanford Univ. (1989).

Sutkeruanp, L E., and Msuap, C. M., "Micruelectronics and Computer
Science,” Scientific American 237:3 {Sept. 1977), 210-262.

Torrov, Tommaso, “Computation and Construction Universality of
Reversible Cellular Automata,” J. Comput. Syst. Sci. 15 {1277), 213-
231,

TorroLy, Tommaso, ‘Cellular Automets Mechanica” (Ph. D. Thesis), Tech.
Rep. no. 208, Logic of Computers Group, Univ. of Michigan (1977).
TorroLi, Tommaso, “The Role of the Obscrver in Uriform Systems,”

Applied General Systems Rescarch (ed. G. J. Kliz), 385-400 (Plenum

35

A YRR AR R

B

P

AL

Press, 1678).

{23] TorroLi, Tommaso, “Bicontinuous Extensions of Invertible Combinatorial
Functions,” Tech. Memo MIT/LCS/TM-124, MIT Lab. for Comp. Sci.
(1979) (to appear in Math. Syst. Theory).

{24] Tuwmng, A. M, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proc. London Math. Soc., ser. 2, 43 (1936), 544~
548,

[25] von Neumanw, John, “Probabilistic Logice and the Synthesis of Reliable
Organisms from Unreliable Components,” Automata Studies (edited by
C. E. Shannon and J. McCarthy), 43-88, Princeton Univ, Press (1958).

[26) Wiameron, R. L., “A New Concept in Computing,” Proc, IRE 47 (1961),
518-523, °

38

AL

[N —

OFFICIAL DISTRIBUTICN LIST

pefense Technical Information Center
Camerxon Station
Alexandria, VA 22314

12 copies

Office of Naval Research
Information Systems Program
Code 437
Arlington, VA 22217

2 copies

' Office of Neval Research

Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, MA 02210

1 copy

Office of Naval Research
Branch Office/Chicago
536 South Clark Street
Chicago, 1. 60605

1 copy

Office of Naval Research
Branch Office/Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

New York Area
715 Broadway - 5th floor
New York, N. Y. 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D. C. 20375

6 copies

Assistant Chief for Technoleogy
Office of Naval Research
Code 200
Arlington, VA 22217
1 copy

Office of Naval Research
Code 455
Arlington, VA 22217

1 copy

Dr. A. L. Slafkosky
Scientific Advisor
Comandant of the Marine Corps
{Code RD-1)
Washington, D. C. 20389

1 copy

Office of Naval Research
Code 458
Arlington, VA 22217

1 copy

Naval Ocean Systems Center,Code 91
Headquarters-Computer Sciences &
Simulation Department
San Diego, CA 92152
Mr. Lloyd 2. Maudlin

1 copy

Mr. E. H. Gleissner
Naval Ship Research & Development Center
Camputation & Math Department
Bethesda, MD 20084
1 copy

Captain Grace M. Hnpoer (008)
Naval Data Autcmation Command
Washington Navy Yard
Building 166
Washington, D. C. 20374

1 copy

Mr. Kin B. Thanpson
Technical Director
Information Systems Divisioi
(OP-91T)
otfice of Chief of Naval Operaticns
Washirgton, D. C. 20350

1 oopy

ST A A

R T LA

SRt AN AL PERATERE L% TN ARG A St E WA o0 Wi S b TR s RSB

EIVORE PP WV

&

